MakeItFrom.com
Menu (ESC)

AWS E308LMo vs. AWS ENiCrFe-3

AWS E308LMo belongs to the iron alloys classification, while AWS ENiCrFe-3 belongs to the nickel alloys. They have a modest 33% of their average alloy composition in common, which, by itself, doesn't mean much. There are 20 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AWS E308LMo and the bottom bar is AWS ENiCrFe-3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 40
34
Poisson's Ratio 0.28
0.3
Shear Modulus, GPa 78
74
Tensile Strength: Ultimate (UTS), MPa 580
630

Thermal Properties

Latent Heat of Fusion, J/g 290
310
Melting Completion (Liquidus), °C 1440
1370
Melting Onset (Solidus), °C 1400
1320
Specific Heat Capacity, J/kg-K 470
460
Thermal Expansion, µm/m-K 14
13

Otherwise Unclassified Properties

Base Metal Price, % relative 19
65
Density, g/cm3 7.9
8.4
Embodied Carbon, kg CO2/kg material 3.8
11
Embodied Energy, MJ/kg 53
150
Embodied Water, L/kg 160
260

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 21
21
Strength to Weight: Bending, points 20
19
Thermal Shock Resistance, points 15
18

Alloy Composition

Carbon (C), % 0 to 0.040
0 to 0.1
Chromium (Cr), % 18 to 21
13 to 17
Cobalt (Co), % 0
0 to 0.12
Copper (Cu), % 0 to 0.75
0 to 0.5
Iron (Fe), % 59.6 to 70.5
0 to 10
Manganese (Mn), % 0.5 to 2.5
5.0 to 9.5
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 9.0 to 12
52 to 81
Niobium (Nb), % 0
1.0 to 2.5
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Tantalum (Ta), % 0
0 to 0.3
Titanium (Ti), % 0
0 to 1.0
Residuals, % 0
0 to 0.5