MakeItFrom.com
Menu (ESC)

AWS E309 vs. A357.0 Aluminum

AWS E309 belongs to the iron alloys classification, while A357.0 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E309 and the bottom bar is A357.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 34
3.7
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 78
26
Tensile Strength: Ultimate (UTS), MPa 620
350

Thermal Properties

Latent Heat of Fusion, J/g 300
500
Melting Completion (Liquidus), °C 1410
610
Melting Onset (Solidus), °C 1370
560
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
160
Thermal Expansion, µm/m-K 14
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
40
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
140

Otherwise Unclassified Properties

Base Metal Price, % relative 20
12
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 3.7
8.2
Embodied Energy, MJ/kg 52
150
Embodied Water, L/kg 180
1110

Common Calculations

Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 22
38
Strength to Weight: Bending, points 21
43
Thermal Diffusivity, mm2/s 4.0
68
Thermal Shock Resistance, points 16
17

Alloy Composition

Aluminum (Al), % 0
90.8 to 93
Beryllium (Be), % 0
0.040 to 0.070
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 22 to 25
0
Copper (Cu), % 0 to 0.75
0 to 0.2
Iron (Fe), % 55.8 to 65.5
0 to 0.2
Magnesium (Mg), % 0
0.4 to 0.7
Manganese (Mn), % 0.5 to 2.5
0 to 0.1
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 12 to 14
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
6.5 to 7.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0.040 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15