MakeItFrom.com
Menu (ESC)

AWS E309Mo vs. C51100 Bronze

AWS E309Mo belongs to the iron alloys classification, while C51100 bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AWS E309Mo and the bottom bar is C51100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
2.5 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 79
42
Tensile Strength: Ultimate (UTS), MPa 620
330 to 720

Thermal Properties

Latent Heat of Fusion, J/g 300
200
Melting Completion (Liquidus), °C 1430
1060
Melting Onset (Solidus), °C 1390
970
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 15
84
Thermal Expansion, µm/m-K 14
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
20
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
20

Otherwise Unclassified Properties

Base Metal Price, % relative 22
32
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 4.2
3.0
Embodied Energy, MJ/kg 59
48
Embodied Water, L/kg 180
340

Common Calculations

Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 22
10 to 22
Strength to Weight: Bending, points 20
12 to 20
Thermal Diffusivity, mm2/s 3.9
25
Thermal Shock Resistance, points 15
12 to 26

Alloy Composition

Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 22 to 25
0
Copper (Cu), % 0 to 0.75
93.8 to 96.5
Iron (Fe), % 53.6 to 63.5
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.5 to 2.5
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 12 to 14
0
Phosphorus (P), % 0 to 0.040
0.030 to 0.35
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
3.5 to 4.9
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5