MakeItFrom.com
Menu (ESC)

AWS E309Nb vs. 5021 Aluminum

AWS E309Nb belongs to the iron alloys classification, while 5021 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E309Nb and the bottom bar is 5021 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 34
1.1 to 3.4
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Tensile Strength: Ultimate (UTS), MPa 620
300 to 310

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Melting Completion (Liquidus), °C 1420
640
Melting Onset (Solidus), °C 1380
590
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
140
Thermal Expansion, µm/m-K 14
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
35
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
120

Otherwise Unclassified Properties

Base Metal Price, % relative 25
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 4.4
8.6
Embodied Energy, MJ/kg 64
150
Embodied Water, L/kg 180
1180

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 22
30 to 32
Strength to Weight: Bending, points 21
37
Thermal Diffusivity, mm2/s 4.0
57
Thermal Shock Resistance, points 16
13 to 14

Alloy Composition

Aluminum (Al), % 0
95.2 to 97.7
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 22 to 25
0 to 0.15
Copper (Cu), % 0 to 0.75
0 to 0.15
Iron (Fe), % 54.8 to 64.8
0 to 0.5
Magnesium (Mg), % 0
2.2 to 2.8
Manganese (Mn), % 0.5 to 2.5
0.1 to 0.5
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 12 to 14
0
Niobium (Nb), % 0.7 to 1.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15