MakeItFrom.com
Menu (ESC)

AWS E310Mo vs. CC382H Copper-nickel

AWS E310Mo belongs to the iron alloys classification, while CC382H copper-nickel belongs to the copper alloys. They have a modest 25% of their average alloy composition in common, which, by itself, doesn't mean much. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AWS E310Mo and the bottom bar is CC382H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Elongation at Break, % 34
20
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
53
Tensile Strength: Ultimate (UTS), MPa 620
490

Thermal Properties

Latent Heat of Fusion, J/g 310
240
Melting Completion (Liquidus), °C 1420
1180
Melting Onset (Solidus), °C 1370
1120
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 14
30
Thermal Expansion, µm/m-K 14
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
5.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
5.6

Otherwise Unclassified Properties

Base Metal Price, % relative 28
41
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 5.1
5.2
Embodied Energy, MJ/kg 71
76
Embodied Water, L/kg 210
290

Common Calculations

Stiffness to Weight: Axial, points 14
8.8
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 22
15
Strength to Weight: Bending, points 20
16
Thermal Diffusivity, mm2/s 3.7
8.2
Thermal Shock Resistance, points 15
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Bismuth (Bi), % 0
0 to 0.0020
Boron (B), % 0
0 to 0.010
Carbon (C), % 0 to 0.12
0 to 0.030
Chromium (Cr), % 25 to 28
1.5 to 2.0
Copper (Cu), % 0 to 0.75
62.8 to 68.4
Iron (Fe), % 42.8 to 52
0.5 to 1.0
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 1.0 to 2.5
0.5 to 1.0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 20 to 22
29 to 32
Phosphorus (P), % 0 to 0.030
0 to 0.010
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0 to 0.75
0.15 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Tellurium (Te), % 0
0 to 0.0050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0 to 0.15