MakeItFrom.com
Menu (ESC)

AWS E310Mo vs. CC766S Brass

AWS E310Mo belongs to the iron alloys classification, while CC766S brass belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AWS E310Mo and the bottom bar is CC766S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
28
Poisson's Ratio 0.27
0.31
Shear Modulus, GPa 80
40
Tensile Strength: Ultimate (UTS), MPa 620
500

Thermal Properties

Latent Heat of Fusion, J/g 310
180
Melting Completion (Liquidus), °C 1420
840
Melting Onset (Solidus), °C 1370
800
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 14
89
Thermal Expansion, µm/m-K 14
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
32
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
36

Otherwise Unclassified Properties

Base Metal Price, % relative 28
24
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 5.1
2.8
Embodied Energy, MJ/kg 71
48
Embodied Water, L/kg 210
330

Common Calculations

Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 22
17
Strength to Weight: Bending, points 20
18
Thermal Diffusivity, mm2/s 3.7
28
Thermal Shock Resistance, points 15
17

Alloy Composition

Aluminum (Al), % 0
0.3 to 1.8
Antimony (Sb), % 0
0 to 0.1
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 25 to 28
0
Copper (Cu), % 0 to 0.75
58 to 64
Iron (Fe), % 42.8 to 52
0 to 0.5
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 1.0 to 2.5
0 to 0.5
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 20 to 22
0 to 2.0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.75
0 to 0.6
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.5
Zinc (Zn), % 0
29.5 to 41.7