MakeItFrom.com
Menu (ESC)

AWS E310Mo vs. C46200 Brass

AWS E310Mo belongs to the iron alloys classification, while C46200 brass belongs to the copper alloys. There are 22 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AWS E310Mo and the bottom bar is C46200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 34
17 to 34
Poisson's Ratio 0.27
0.31
Shear Modulus, GPa 80
40
Tensile Strength: Ultimate (UTS), MPa 620
370 to 480

Thermal Properties

Latent Heat of Fusion, J/g 310
170
Melting Completion (Liquidus), °C 1420
840
Melting Onset (Solidus), °C 1370
800
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 14
110
Thermal Expansion, µm/m-K 14
20

Otherwise Unclassified Properties

Base Metal Price, % relative 28
24
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 5.1
2.7
Embodied Energy, MJ/kg 71
46
Embodied Water, L/kg 210
330

Common Calculations

Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 22
13 to 16
Strength to Weight: Bending, points 20
14 to 17
Thermal Diffusivity, mm2/s 3.7
35
Thermal Shock Resistance, points 15
12 to 16

Alloy Composition

Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 25 to 28
0
Copper (Cu), % 0 to 0.75
62 to 65
Iron (Fe), % 42.8 to 52
0 to 0.1
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 1.0 to 2.5
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 20 to 22
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.5 to 1.0
Zinc (Zn), % 0
33.3 to 37.5
Residuals, % 0
0 to 0.4