MakeItFrom.com
Menu (ESC)

AWS E3155 vs. 1070 Aluminum

AWS E3155 belongs to the iron alloys classification, while 1070 aluminum belongs to the aluminum alloys. There are 22 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E3155 and the bottom bar is 1070 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 23
4.5 to 39
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 81
26
Tensile Strength: Ultimate (UTS), MPa 770
73 to 140

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1410
640
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 13
230
Thermal Expansion, µm/m-K 13
23

Otherwise Unclassified Properties

Base Metal Price, % relative 70
9.5
Density, g/cm3 8.4
2.7
Embodied Carbon, kg CO2/kg material 7.7
8.3
Embodied Energy, MJ/kg 110
160
Embodied Water, L/kg 300
1200

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 26
7.5 to 14
Strength to Weight: Bending, points 22
14 to 22
Thermal Diffusivity, mm2/s 3.3
94
Thermal Shock Resistance, points 20
3.3 to 6.1

Alloy Composition

Aluminum (Al), % 0
99.7 to 100
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 20 to 22.5
0
Cobalt (Co), % 18.5 to 21
0
Copper (Cu), % 0 to 0.75
0 to 0.040
Iron (Fe), % 23.3 to 36.3
0 to 0.25
Magnesium (Mg), % 0
0 to 0.030
Manganese (Mn), % 1.0 to 2.5
0 to 0.030
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 19 to 21
0
Niobium (Nb), % 0.75 to 1.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.030
Tungsten (W), % 2.0 to 3.0
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.040
Residuals, % 0
0 to 0.030