MakeItFrom.com
Menu (ESC)

AWS E3155 vs. 3203 Aluminum

AWS E3155 belongs to the iron alloys classification, while 3203 aluminum belongs to the aluminum alloys. There are 22 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E3155 and the bottom bar is 3203 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 23
4.5 to 29
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 81
26
Tensile Strength: Ultimate (UTS), MPa 770
110 to 200

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Melting Completion (Liquidus), °C 1460
650
Melting Onset (Solidus), °C 1410
620
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 13
170
Thermal Expansion, µm/m-K 13
23

Otherwise Unclassified Properties

Base Metal Price, % relative 70
9.0
Density, g/cm3 8.4
2.8
Embodied Carbon, kg CO2/kg material 7.7
8.1
Embodied Energy, MJ/kg 110
150
Embodied Water, L/kg 300
1180

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 26
11 to 20
Strength to Weight: Bending, points 22
19 to 28
Thermal Diffusivity, mm2/s 3.3
70
Thermal Shock Resistance, points 20
4.9 to 8.8

Alloy Composition

Aluminum (Al), % 0
96.9 to 99
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 20 to 22.5
0
Cobalt (Co), % 18.5 to 21
0
Copper (Cu), % 0 to 0.75
0 to 0.050
Iron (Fe), % 23.3 to 36.3
0 to 0.7
Manganese (Mn), % 1.0 to 2.5
1.0 to 1.5
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 19 to 21
0
Niobium (Nb), % 0.75 to 1.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.6
Sulfur (S), % 0 to 0.030
0
Tungsten (W), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15