MakeItFrom.com
Menu (ESC)

AWS E3155 vs. ASTM A356 Grade 8

Both AWS E3155 and ASTM A356 grade 8 are iron alloys. They have a modest 33% of their average alloy composition in common, which, by itself, doesn't mean much. There are 23 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is AWS E3155 and the bottom bar is ASTM A356 grade 8.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 23
21
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 81
73
Tensile Strength: Ultimate (UTS), MPa 770
630

Thermal Properties

Latent Heat of Fusion, J/g 310
260
Melting Completion (Liquidus), °C 1460
1470
Melting Onset (Solidus), °C 1410
1430
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 13
38
Thermal Expansion, µm/m-K 13
13

Otherwise Unclassified Properties

Base Metal Price, % relative 70
3.5
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 7.7
2.0
Embodied Energy, MJ/kg 110
26
Embodied Water, L/kg 300
55

Common Calculations

PREN (Pitting Resistance) 35
4.7
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 26
22
Strength to Weight: Bending, points 22
21
Thermal Diffusivity, mm2/s 3.3
10
Thermal Shock Resistance, points 20
18

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.2
Chromium (Cr), % 20 to 22.5
1.0 to 1.5
Cobalt (Co), % 18.5 to 21
0
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 23.3 to 36.3
95.4 to 97.4
Manganese (Mn), % 1.0 to 2.5
0.5 to 0.9
Molybdenum (Mo), % 2.5 to 3.5
0.9 to 1.2
Nickel (Ni), % 19 to 21
0
Niobium (Nb), % 0.75 to 1.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 1.0
0.2 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.030
Tungsten (W), % 2.0 to 3.0
0
Vanadium (V), % 0
0.050 to 0.15