MakeItFrom.com
Menu (ESC)

AWS E3155 vs. AWS E80C-Ni1

Both AWS E3155 and AWS E80C-Ni1 are iron alloys. Both are furnished in the as-welded condition. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 22 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AWS E3155 and the bottom bar is AWS E80C-Ni1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 23
27
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 81
72
Tensile Strength: Ultimate (UTS), MPa 770
620

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 13
40
Thermal Expansion, µm/m-K 13
13

Otherwise Unclassified Properties

Base Metal Price, % relative 70
2.6
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 7.7
1.6
Embodied Energy, MJ/kg 110
21
Embodied Water, L/kg 300
49

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 26
22
Strength to Weight: Bending, points 22
21
Thermal Diffusivity, mm2/s 3.3
11
Thermal Shock Resistance, points 20
18

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.12
Chromium (Cr), % 20 to 22.5
0
Cobalt (Co), % 18.5 to 21
0
Copper (Cu), % 0 to 0.75
0 to 0.35
Iron (Fe), % 23.3 to 36.3
95.1 to 99.2
Manganese (Mn), % 1.0 to 2.5
0 to 1.5
Molybdenum (Mo), % 2.5 to 3.5
0 to 0.3
Nickel (Ni), % 19 to 21
0.8 to 1.1
Niobium (Nb), % 0.75 to 1.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.9
Sulfur (S), % 0 to 0.030
0 to 0.030
Tungsten (W), % 2.0 to 3.0
0
Vanadium (V), % 0
0 to 0.030
Residuals, % 0
0 to 0.5