MakeItFrom.com
Menu (ESC)

AWS E3155 vs. EN AC-43500 Aluminum

AWS E3155 belongs to the iron alloys classification, while EN AC-43500 aluminum belongs to the aluminum alloys. There are 22 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E3155 and the bottom bar is EN AC-43500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
72
Elongation at Break, % 23
4.5 to 13
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 81
27
Tensile Strength: Ultimate (UTS), MPa 770
220 to 300

Thermal Properties

Latent Heat of Fusion, J/g 310
550
Melting Completion (Liquidus), °C 1460
600
Melting Onset (Solidus), °C 1410
590
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 13
140
Thermal Expansion, µm/m-K 13
22

Otherwise Unclassified Properties

Base Metal Price, % relative 70
9.5
Density, g/cm3 8.4
2.6
Embodied Carbon, kg CO2/kg material 7.7
7.8
Embodied Energy, MJ/kg 110
150
Embodied Water, L/kg 300
1070

Common Calculations

Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 24
54
Strength to Weight: Axial, points 26
24 to 33
Strength to Weight: Bending, points 22
32 to 39
Thermal Diffusivity, mm2/s 3.3
60
Thermal Shock Resistance, points 20
10 to 14

Alloy Composition

Aluminum (Al), % 0
86.4 to 90.5
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 20 to 22.5
0
Cobalt (Co), % 18.5 to 21
0
Copper (Cu), % 0 to 0.75
0 to 0.050
Iron (Fe), % 23.3 to 36.3
0 to 0.25
Magnesium (Mg), % 0
0.1 to 0.6
Manganese (Mn), % 1.0 to 2.5
0.4 to 0.8
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 19 to 21
0
Niobium (Nb), % 0.75 to 1.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
9.0 to 11.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.15