MakeItFrom.com
Menu (ESC)

AWS E3155 vs. CC766S Brass

AWS E3155 belongs to the iron alloys classification, while CC766S brass belongs to the copper alloys. There are 22 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AWS E3155 and the bottom bar is CC766S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 23
28
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 81
40
Tensile Strength: Ultimate (UTS), MPa 770
500

Thermal Properties

Latent Heat of Fusion, J/g 310
180
Melting Completion (Liquidus), °C 1460
840
Melting Onset (Solidus), °C 1410
800
Specific Heat Capacity, J/kg-K 450
390
Thermal Conductivity, W/m-K 13
89
Thermal Expansion, µm/m-K 13
20

Otherwise Unclassified Properties

Base Metal Price, % relative 70
24
Density, g/cm3 8.4
8.0
Embodied Carbon, kg CO2/kg material 7.7
2.8
Embodied Energy, MJ/kg 110
48
Embodied Water, L/kg 300
330

Common Calculations

Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 26
17
Strength to Weight: Bending, points 22
18
Thermal Diffusivity, mm2/s 3.3
28
Thermal Shock Resistance, points 20
17

Alloy Composition

Aluminum (Al), % 0
0.3 to 1.8
Antimony (Sb), % 0
0 to 0.1
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 20 to 22.5
0
Cobalt (Co), % 18.5 to 21
0
Copper (Cu), % 0 to 0.75
58 to 64
Iron (Fe), % 23.3 to 36.3
0 to 0.5
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 1.0 to 2.5
0 to 0.5
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 19 to 21
0 to 2.0
Niobium (Nb), % 0.75 to 1.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.6
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.5
Tungsten (W), % 2.0 to 3.0
0
Zinc (Zn), % 0
29.5 to 41.7