MakeItFrom.com
Menu (ESC)

AWS E3155 vs. SAE-AISI 1086 Steel

Both AWS E3155 and SAE-AISI 1086 steel are iron alloys. They have a modest 30% of their average alloy composition in common, which, by itself, doesn't mean much. There are 22 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is AWS E3155 and the bottom bar is SAE-AISI 1086 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 23
11
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 81
72
Tensile Strength: Ultimate (UTS), MPa 770
760 to 870

Thermal Properties

Latent Heat of Fusion, J/g 310
240
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1410
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 13
50
Thermal Expansion, µm/m-K 13
11

Otherwise Unclassified Properties

Base Metal Price, % relative 70
1.8
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 7.7
1.4
Embodied Energy, MJ/kg 110
19
Embodied Water, L/kg 300
45

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 26
27 to 31
Strength to Weight: Bending, points 22
24 to 26
Thermal Diffusivity, mm2/s 3.3
14
Thermal Shock Resistance, points 20
26 to 30

Alloy Composition

Carbon (C), % 0 to 0.1
0.8 to 0.93
Chromium (Cr), % 20 to 22.5
0
Cobalt (Co), % 18.5 to 21
0
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 23.3 to 36.3
98.5 to 98.9
Manganese (Mn), % 1.0 to 2.5
0.3 to 0.5
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 19 to 21
0
Niobium (Nb), % 0.75 to 1.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0 to 0.050
Tungsten (W), % 2.0 to 3.0
0