MakeItFrom.com
Menu (ESC)

AWS E3155 vs. C71580 Copper-nickel

AWS E3155 belongs to the iron alloys classification, while C71580 copper-nickel belongs to the copper alloys. They have a modest 21% of their average alloy composition in common, which, by itself, doesn't mean much. There are 22 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is AWS E3155 and the bottom bar is C71580 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
140
Elongation at Break, % 23
40
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 81
51
Tensile Strength: Ultimate (UTS), MPa 770
330

Thermal Properties

Latent Heat of Fusion, J/g 310
230
Melting Completion (Liquidus), °C 1460
1180
Melting Onset (Solidus), °C 1410
1120
Specific Heat Capacity, J/kg-K 450
400
Thermal Conductivity, W/m-K 13
39
Thermal Expansion, µm/m-K 13
15

Otherwise Unclassified Properties

Base Metal Price, % relative 70
41
Density, g/cm3 8.4
8.9
Embodied Carbon, kg CO2/kg material 7.7
5.1
Embodied Energy, MJ/kg 110
74
Embodied Water, L/kg 300
280

Common Calculations

Stiffness to Weight: Axial, points 14
8.5
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 26
10
Strength to Weight: Bending, points 22
12
Thermal Diffusivity, mm2/s 3.3
11
Thermal Shock Resistance, points 20
11

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.070
Chromium (Cr), % 20 to 22.5
0
Cobalt (Co), % 18.5 to 21
0
Copper (Cu), % 0 to 0.75
65.5 to 71
Iron (Fe), % 23.3 to 36.3
0 to 0.5
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 1.0 to 2.5
0 to 0.3
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 19 to 21
29 to 33
Niobium (Nb), % 0.75 to 1.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tungsten (W), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.5