MakeItFrom.com
Menu (ESC)

AWS E316H vs. 6105 Aluminum

AWS E316H belongs to the iron alloys classification, while 6105 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E316H and the bottom bar is 6105 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 34
9.0 to 16
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Tensile Strength: Ultimate (UTS), MPa 580
190 to 280

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Melting Completion (Liquidus), °C 1440
650
Melting Onset (Solidus), °C 1390
600
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 15
180 to 190
Thermal Expansion, µm/m-K 14
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
46 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
150 to 170

Otherwise Unclassified Properties

Base Metal Price, % relative 20
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 4.0
8.3
Embodied Energy, MJ/kg 55
150
Embodied Water, L/kg 160
1180

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 21
20 to 29
Strength to Weight: Bending, points 20
28 to 35
Thermal Diffusivity, mm2/s 4.0
72 to 79
Thermal Shock Resistance, points 15
8.6 to 12

Alloy Composition

Aluminum (Al), % 0
97.2 to 99
Carbon (C), % 0.040 to 0.080
0
Chromium (Cr), % 17 to 20
0 to 0.1
Copper (Cu), % 0 to 0.75
0 to 0.1
Iron (Fe), % 58.6 to 69.5
0 to 0.35
Magnesium (Mg), % 0
0.45 to 0.8
Manganese (Mn), % 0.5 to 2.5
0 to 0.1
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 11 to 14
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.6 to 1.0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15