MakeItFrom.com
Menu (ESC)

AWS E316L vs. 712.0 Aluminum

AWS E316L belongs to the iron alloys classification, while 712.0 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E316L and the bottom bar is 712.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 34
4.5 to 4.7
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 78
27
Tensile Strength: Ultimate (UTS), MPa 550
250 to 260

Thermal Properties

Latent Heat of Fusion, J/g 290
380
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1390
610
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 15
160
Thermal Expansion, µm/m-K 14
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
40
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
120

Otherwise Unclassified Properties

Base Metal Price, % relative 20
9.5
Density, g/cm3 7.9
3.0
Embodied Carbon, kg CO2/kg material 4.0
8.0
Embodied Energy, MJ/kg 55
150
Embodied Water, L/kg 160
1140

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 19
24 to 25
Strength to Weight: Bending, points 19
30 to 31
Thermal Diffusivity, mm2/s 4.0
62
Thermal Shock Resistance, points 14
11

Alloy Composition

Aluminum (Al), % 0
90.7 to 94
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 17 to 20
0.4 to 0.6
Copper (Cu), % 0 to 0.75
0 to 0.25
Iron (Fe), % 58.6 to 69.5
0 to 0.5
Magnesium (Mg), % 0
0.5 to 0.65
Manganese (Mn), % 0.5 to 2.5
0 to 0.1
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 11 to 14
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.3
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0.15 to 0.25
Zinc (Zn), % 0
5.0 to 6.5
Residuals, % 0
0 to 0.2