MakeItFrom.com
Menu (ESC)

AWS E316L vs. EN 1.4567 Stainless Steel

Both AWS E316L and EN 1.4567 stainless steel are iron alloys. They have a moderately high 93% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is AWS E316L and the bottom bar is EN 1.4567 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
22 to 51
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
76
Tensile Strength: Ultimate (UTS), MPa 550
550 to 780

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Melting Completion (Liquidus), °C 1440
1410
Melting Onset (Solidus), °C 1390
1370
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
11
Thermal Expansion, µm/m-K 14
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 20
16
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.0
3.1
Embodied Energy, MJ/kg 55
43
Embodied Water, L/kg 160
150

Common Calculations

PREN (Pitting Resistance) 27
19
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19
19 to 27
Strength to Weight: Bending, points 19
19 to 24
Thermal Diffusivity, mm2/s 4.0
3.0
Thermal Shock Resistance, points 14
12 to 17

Alloy Composition

Carbon (C), % 0 to 0.040
0 to 0.040
Chromium (Cr), % 17 to 20
17 to 19
Copper (Cu), % 0 to 0.75
3.0 to 4.0
Iron (Fe), % 58.6 to 69.5
63.3 to 71.5
Manganese (Mn), % 0.5 to 2.5
0 to 2.0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 11 to 14
8.5 to 10.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015