MakeItFrom.com
Menu (ESC)

AWS E316L vs. EN 1.4859 Stainless Steel

Both AWS E316L and EN 1.4859 stainless steel are iron alloys. They have 77% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AWS E316L and the bottom bar is EN 1.4859 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
23
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
76
Tensile Strength: Ultimate (UTS), MPa 550
490

Thermal Properties

Latent Heat of Fusion, J/g 290
310
Melting Completion (Liquidus), °C 1440
1410
Melting Onset (Solidus), °C 1390
1360
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
13
Thermal Expansion, µm/m-K 14
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 20
36
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 4.0
6.2
Embodied Energy, MJ/kg 55
88
Embodied Water, L/kg 160
190

Common Calculations

PREN (Pitting Resistance) 27
21
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19
17
Strength to Weight: Bending, points 19
17
Thermal Diffusivity, mm2/s 4.0
3.4
Thermal Shock Resistance, points 14
11

Alloy Composition

Carbon (C), % 0 to 0.040
0.050 to 0.15
Chromium (Cr), % 17 to 20
19 to 21
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 58.6 to 69.5
40.3 to 49
Manganese (Mn), % 0.5 to 2.5
0 to 2.0
Molybdenum (Mo), % 2.0 to 3.0
0 to 0.5
Nickel (Ni), % 11 to 14
31 to 33
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0.5 to 1.5
Sulfur (S), % 0 to 0.030
0 to 0.030