MakeItFrom.com
Menu (ESC)

AWS E316L vs. EN AC-41000 Aluminum

AWS E316L belongs to the iron alloys classification, while EN AC-41000 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E316L and the bottom bar is EN AC-41000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 34
4.5
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Tensile Strength: Ultimate (UTS), MPa 550
170 to 280

Thermal Properties

Latent Heat of Fusion, J/g 290
420
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1390
630
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 15
170
Thermal Expansion, µm/m-K 14
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
38
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
130

Otherwise Unclassified Properties

Base Metal Price, % relative 20
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 4.0
8.2
Embodied Energy, MJ/kg 55
150
Embodied Water, L/kg 160
1160

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 19
18 to 29
Strength to Weight: Bending, points 19
26 to 35
Thermal Diffusivity, mm2/s 4.0
69
Thermal Shock Resistance, points 14
7.8 to 13

Alloy Composition

Aluminum (Al), % 0
95.2 to 97.6
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 17 to 20
0
Copper (Cu), % 0 to 0.75
0 to 0.1
Iron (Fe), % 58.6 to 69.5
0 to 0.6
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.45 to 0.65
Manganese (Mn), % 0.5 to 2.5
0.3 to 0.5
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 11 to 14
0 to 0.050
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
1.6 to 2.4
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0.050 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15