MakeItFrom.com
Menu (ESC)

AWS E316L vs. C94500 Bronze

AWS E316L belongs to the iron alloys classification, while C94500 bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AWS E316L and the bottom bar is C94500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
92
Elongation at Break, % 34
12
Poisson's Ratio 0.28
0.36
Shear Modulus, GPa 78
34
Tensile Strength: Ultimate (UTS), MPa 550
170

Thermal Properties

Latent Heat of Fusion, J/g 290
160
Melting Completion (Liquidus), °C 1440
940
Melting Onset (Solidus), °C 1390
800
Specific Heat Capacity, J/kg-K 470
330
Thermal Conductivity, W/m-K 15
52
Thermal Expansion, µm/m-K 14
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
10
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
9.7

Otherwise Unclassified Properties

Base Metal Price, % relative 20
30
Density, g/cm3 7.9
9.3
Embodied Carbon, kg CO2/kg material 4.0
3.2
Embodied Energy, MJ/kg 55
51
Embodied Water, L/kg 160
380

Common Calculations

Stiffness to Weight: Axial, points 14
5.5
Stiffness to Weight: Bending, points 25
16
Strength to Weight: Axial, points 19
5.2
Strength to Weight: Bending, points 19
7.4
Thermal Diffusivity, mm2/s 4.0
17
Thermal Shock Resistance, points 14
6.7

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.8
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 17 to 20
0
Copper (Cu), % 0 to 0.75
66.7 to 78
Iron (Fe), % 58.6 to 69.5
0 to 0.15
Lead (Pb), % 0
16 to 22
Manganese (Mn), % 0.5 to 2.5
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 11 to 14
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0
0 to 1.2