MakeItFrom.com
Menu (ESC)

AWS E316LMn vs. EN 1.0050 Steel

Both AWS E316LMn and EN 1.0050 steel are iron alloys. They have 53% of their average alloy composition in common. There are 20 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is AWS E316LMn and the bottom bar is EN 1.0050 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 23
18
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 79
73
Tensile Strength: Ultimate (UTS), MPa 620
530

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Melting Completion (Liquidus), °C 1420
1470
Melting Onset (Solidus), °C 1370
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Expansion, µm/m-K 14
12

Otherwise Unclassified Properties

Base Metal Price, % relative 24
1.7
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 4.6
1.4
Embodied Energy, MJ/kg 64
18
Embodied Water, L/kg 180
45

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 22
19
Strength to Weight: Bending, points 20
18
Thermal Shock Resistance, points 15
17

Alloy Composition

Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 47.5 to 59.4
99.876 to 100
Manganese (Mn), % 5.0 to 8.0
0
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 15 to 18
0
Nitrogen (N), % 0.1 to 0.25
0 to 0.014
Phosphorus (P), % 0 to 0.040
0 to 0.055
Silicon (Si), % 0 to 0.9
0
Sulfur (S), % 0 to 0.030
0 to 0.055