AWS E316LMn vs. EN 1.0220 Steel
Both AWS E316LMn and EN 1.0220 steel are iron alloys. They have 54% of their average alloy composition in common. There are 20 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.
For each property being compared, the top bar is AWS E316LMn and the bottom bar is EN 1.0220 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
190 |
Elongation at Break, % | 23 | |
23 |
Poisson's Ratio | 0.28 | |
0.29 |
Shear Modulus, GPa | 79 | |
73 |
Tensile Strength: Ultimate (UTS), MPa | 620 | |
390 |
Thermal Properties
Latent Heat of Fusion, J/g | 300 | |
250 |
Melting Completion (Liquidus), °C | 1420 | |
1460 |
Melting Onset (Solidus), °C | 1370 | |
1420 |
Specific Heat Capacity, J/kg-K | 470 | |
470 |
Thermal Expansion, µm/m-K | 14 | |
12 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 24 | |
1.8 |
Density, g/cm3 | 7.9 | |
7.9 |
Embodied Carbon, kg CO2/kg material | 4.6 | |
1.4 |
Embodied Energy, MJ/kg | 64 | |
18 |
Embodied Water, L/kg | 180 | |
46 |
Common Calculations
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 25 | |
24 |
Strength to Weight: Axial, points | 22 | |
14 |
Strength to Weight: Bending, points | 20 | |
15 |
Thermal Shock Resistance, points | 15 | |
12 |
Alloy Composition
Carbon (C), % | 0 to 0.040 | |
0 to 0.16 |
Chromium (Cr), % | 18 to 21 | |
0 |
Copper (Cu), % | 0 to 0.75 | |
0 |
Iron (Fe), % | 47.5 to 59.4 | |
98.2 to 100 |
Manganese (Mn), % | 5.0 to 8.0 | |
0 to 1.2 |
Molybdenum (Mo), % | 2.5 to 3.5 | |
0 |
Nickel (Ni), % | 15 to 18 | |
0 |
Nitrogen (N), % | 0.1 to 0.25 | |
0 |
Phosphorus (P), % | 0 to 0.040 | |
0 to 0.045 |
Silicon (Si), % | 0 to 0.9 | |
0 to 0.35 |
Sulfur (S), % | 0 to 0.030 | |
0 to 0.045 |