MakeItFrom.com
Menu (ESC)

AWS E316LMn vs. CC334G Bronze

AWS E316LMn belongs to the iron alloys classification, while CC334G bronze belongs to the copper alloys. There are 20 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is AWS E316LMn and the bottom bar is CC334G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 23
5.6
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
45
Tensile Strength: Ultimate (UTS), MPa 620
810

Thermal Properties

Latent Heat of Fusion, J/g 300
240
Melting Completion (Liquidus), °C 1420
1080
Melting Onset (Solidus), °C 1370
1020
Specific Heat Capacity, J/kg-K 470
450
Thermal Expansion, µm/m-K 14
18

Otherwise Unclassified Properties

Base Metal Price, % relative 24
29
Density, g/cm3 7.9
8.2
Embodied Carbon, kg CO2/kg material 4.6
3.6
Embodied Energy, MJ/kg 64
59
Embodied Water, L/kg 180
390

Common Calculations

Stiffness to Weight: Axial, points 14
8.1
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 22
28
Strength to Weight: Bending, points 20
24
Thermal Shock Resistance, points 15
28

Alloy Composition

Aluminum (Al), % 0
10 to 12
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0 to 0.75
72 to 84.5
Iron (Fe), % 47.5 to 59.4
3.0 to 7.0
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 5.0 to 8.0
0 to 2.5
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 15 to 18
4.0 to 7.5
Nitrogen (N), % 0.1 to 0.25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.9
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5