MakeItFrom.com
Menu (ESC)

AWS E316LMn vs. C41500 Brass

AWS E316LMn belongs to the iron alloys classification, while C41500 brass belongs to the copper alloys. There are 20 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is AWS E316LMn and the bottom bar is C41500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 23
2.0 to 42
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
42
Tensile Strength: Ultimate (UTS), MPa 620
340 to 560

Thermal Properties

Latent Heat of Fusion, J/g 300
200
Melting Completion (Liquidus), °C 1420
1030
Melting Onset (Solidus), °C 1370
1010
Specific Heat Capacity, J/kg-K 470
380
Thermal Expansion, µm/m-K 14
18

Otherwise Unclassified Properties

Base Metal Price, % relative 24
30
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 4.6
2.8
Embodied Energy, MJ/kg 64
45
Embodied Water, L/kg 180
330

Common Calculations

Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 22
11 to 18
Strength to Weight: Bending, points 20
12 to 17
Thermal Shock Resistance, points 15
12 to 20

Alloy Composition

Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0 to 0.75
89 to 93
Iron (Fe), % 47.5 to 59.4
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 5.0 to 8.0
0
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 15 to 18
0
Nitrogen (N), % 0.1 to 0.25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.9
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.5 to 2.2
Zinc (Zn), % 0
4.2 to 9.5
Residuals, % 0
0 to 0.5