MakeItFrom.com
Menu (ESC)

AWS E316LMn vs. C69400 Brass

AWS E316LMn belongs to the iron alloys classification, while C69400 brass belongs to the copper alloys. There are 20 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is AWS E316LMn and the bottom bar is C69400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 23
17
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
42
Tensile Strength: Ultimate (UTS), MPa 620
570

Thermal Properties

Latent Heat of Fusion, J/g 300
260
Melting Completion (Liquidus), °C 1420
920
Melting Onset (Solidus), °C 1370
820
Specific Heat Capacity, J/kg-K 470
410
Thermal Expansion, µm/m-K 14
18

Otherwise Unclassified Properties

Base Metal Price, % relative 24
27
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 4.6
2.7
Embodied Energy, MJ/kg 64
44
Embodied Water, L/kg 180
300

Common Calculations

Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 22
19
Strength to Weight: Bending, points 20
18
Thermal Shock Resistance, points 15
20

Alloy Composition

Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0 to 0.75
80 to 83
Iron (Fe), % 47.5 to 59.4
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 5.0 to 8.0
0
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 15 to 18
0
Nitrogen (N), % 0.1 to 0.25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.9
3.5 to 4.5
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
11.5 to 16.5
Residuals, % 0
0 to 0.5