MakeItFrom.com
Menu (ESC)

AWS E316LMn vs. C90300 Bronze

AWS E316LMn belongs to the iron alloys classification, while C90300 bronze belongs to the copper alloys. There are 20 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is AWS E316LMn and the bottom bar is C90300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 23
22
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 79
41
Tensile Strength: Ultimate (UTS), MPa 620
330

Thermal Properties

Latent Heat of Fusion, J/g 300
190
Melting Completion (Liquidus), °C 1420
1000
Melting Onset (Solidus), °C 1370
850
Specific Heat Capacity, J/kg-K 470
370
Thermal Expansion, µm/m-K 14
18

Otherwise Unclassified Properties

Base Metal Price, % relative 24
33
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 4.6
3.4
Embodied Energy, MJ/kg 64
56
Embodied Water, L/kg 180
370

Common Calculations

Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 22
11
Strength to Weight: Bending, points 20
12
Thermal Shock Resistance, points 15
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0 to 0.75
86 to 89
Iron (Fe), % 47.5 to 59.4
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 5.0 to 8.0
0
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 15 to 18
0 to 1.0
Nitrogen (N), % 0.1 to 0.25
0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 0.9
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
7.5 to 9.0
Zinc (Zn), % 0
3.0 to 5.0
Residuals, % 0
0 to 0.6