MakeItFrom.com
Menu (ESC)

AWS E316LMn vs. S35125 Stainless Steel

Both AWS E316LMn and S35125 stainless steel are iron alloys. They have 81% of their average alloy composition in common. There are 21 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is AWS E316LMn and the bottom bar is S35125 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 23
39
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 79
78
Tensile Strength: Ultimate (UTS), MPa 620
540

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Melting Completion (Liquidus), °C 1420
1430
Melting Onset (Solidus), °C 1370
1380
Specific Heat Capacity, J/kg-K 470
470
Thermal Expansion, µm/m-K 14
16

Otherwise Unclassified Properties

Base Metal Price, % relative 24
36
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 4.6
6.4
Embodied Energy, MJ/kg 64
89
Embodied Water, L/kg 180
210

Common Calculations

PREN (Pitting Resistance) 32
30
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 22
19
Strength to Weight: Bending, points 20
18
Thermal Shock Resistance, points 15
12

Alloy Composition

Carbon (C), % 0 to 0.040
0 to 0.1
Chromium (Cr), % 18 to 21
20 to 23
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 47.5 to 59.4
36.2 to 45.8
Manganese (Mn), % 5.0 to 8.0
1.0 to 1.5
Molybdenum (Mo), % 2.5 to 3.5
2.0 to 3.0
Nickel (Ni), % 15 to 18
31 to 35
Niobium (Nb), % 0
0.25 to 0.6
Nitrogen (N), % 0.1 to 0.25
0
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 0.9
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.015