MakeItFrom.com
Menu (ESC)

AWS E317 vs. 2195 Aluminum

AWS E317 belongs to the iron alloys classification, while 2195 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E317 and the bottom bar is 2195 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 34
9.3
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
26
Tensile Strength: Ultimate (UTS), MPa 620
590

Thermal Properties

Latent Heat of Fusion, J/g 300
390
Melting Completion (Liquidus), °C 1450
660
Melting Onset (Solidus), °C 1400
550
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 15
130
Thermal Expansion, µm/m-K 14
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
34
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
100

Otherwise Unclassified Properties

Base Metal Price, % relative 22
31
Density, g/cm3 7.9
3.0
Embodied Carbon, kg CO2/kg material 4.3
8.6
Embodied Energy, MJ/kg 59
160
Embodied Water, L/kg 170
1470

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 22
55
Strength to Weight: Bending, points 20
53
Thermal Diffusivity, mm2/s 3.9
49
Thermal Shock Resistance, points 16
26

Alloy Composition

Aluminum (Al), % 0
91.9 to 94.9
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0 to 0.75
3.7 to 4.3
Iron (Fe), % 56.6 to 66.5
0 to 0.15
Lithium (Li), % 0
0.8 to 1.2
Magnesium (Mg), % 0
0.25 to 0.8
Manganese (Mn), % 0.5 to 2.5
0 to 0.25
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 12 to 14
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.12
Silver (Ag), % 0
0.25 to 0.6
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0.080 to 0.16
Residuals, % 0
0 to 0.15