MakeItFrom.com
Menu (ESC)

AWS E317L vs. 242.0 Aluminum

AWS E317L belongs to the iron alloys classification, while 242.0 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E317L and the bottom bar is 242.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 34
0.5 to 1.5
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
27
Tensile Strength: Ultimate (UTS), MPa 580
180 to 290

Thermal Properties

Latent Heat of Fusion, J/g 300
390
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1400
530
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 15
130 to 170
Thermal Expansion, µm/m-K 14
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
33 to 44
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
96 to 130

Otherwise Unclassified Properties

Base Metal Price, % relative 22
12
Density, g/cm3 7.9
3.1
Embodied Carbon, kg CO2/kg material 4.3
8.3
Embodied Energy, MJ/kg 59
150
Embodied Water, L/kg 170
1130

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
45
Strength to Weight: Axial, points 20
16 to 26
Strength to Weight: Bending, points 20
23 to 32
Thermal Diffusivity, mm2/s 3.9
50 to 62
Thermal Shock Resistance, points 15
8.0 to 13

Alloy Composition

Aluminum (Al), % 0
88.4 to 93.6
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 18 to 21
0 to 0.25
Copper (Cu), % 0 to 0.75
3.5 to 4.5
Iron (Fe), % 56.6 to 66.5
0 to 1.0
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0.5 to 2.5
0 to 0.35
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 12 to 14
1.7 to 2.3
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.7
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.35
Residuals, % 0
0 to 0.15