MakeItFrom.com
Menu (ESC)

AWS E317L vs. AWS ER80S-B3L

Both AWS E317L and AWS ER80S-B3L are iron alloys. They have 66% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AWS E317L and the bottom bar is AWS ER80S-B3L.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
19
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 79
74
Tensile Strength: Ultimate (UTS), MPa 580
630

Thermal Properties

Latent Heat of Fusion, J/g 300
260
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
41
Thermal Expansion, µm/m-K 14
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 22
4.1
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.3
1.8
Embodied Energy, MJ/kg 59
23
Embodied Water, L/kg 170
60

Common Calculations

PREN (Pitting Resistance) 31
6.0
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 20
22
Strength to Weight: Bending, points 20
21
Thermal Diffusivity, mm2/s 3.9
11
Thermal Shock Resistance, points 15
18

Alloy Composition

Carbon (C), % 0 to 0.040
0 to 0.050
Chromium (Cr), % 18 to 21
2.3 to 2.7
Copper (Cu), % 0 to 0.75
0 to 0.35
Iron (Fe), % 56.6 to 66.5
93.6 to 96
Manganese (Mn), % 0.5 to 2.5
0.4 to 0.7
Molybdenum (Mo), % 3.0 to 4.0
0.9 to 1.2
Nickel (Ni), % 12 to 14
0 to 0.2
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0.4 to 0.7
Sulfur (S), % 0 to 0.030
0 to 0.025
Residuals, % 0
0 to 0.5