MakeItFrom.com
Menu (ESC)

AWS E317L vs. S21800 Stainless Steel

Both AWS E317L and S21800 stainless steel are iron alloys. They have 89% of their average alloy composition in common. There are 21 material properties with values for both materials. Properties with values for just one material (14, in this case) are not shown.

For each property being compared, the top bar is AWS E317L and the bottom bar is S21800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
40
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 79
75
Tensile Strength: Ultimate (UTS), MPa 580
740

Thermal Properties

Latent Heat of Fusion, J/g 300
340
Melting Completion (Liquidus), °C 1450
1360
Melting Onset (Solidus), °C 1400
1310
Specific Heat Capacity, J/kg-K 470
500
Thermal Expansion, µm/m-K 14
16

Otherwise Unclassified Properties

Base Metal Price, % relative 22
15
Density, g/cm3 7.9
7.5
Embodied Carbon, kg CO2/kg material 4.3
3.1
Embodied Energy, MJ/kg 59
45
Embodied Water, L/kg 170
150

Common Calculations

PREN (Pitting Resistance) 31
19
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
26
Strength to Weight: Axial, points 20
27
Strength to Weight: Bending, points 20
24
Thermal Shock Resistance, points 15
17

Alloy Composition

Carbon (C), % 0 to 0.040
0 to 0.1
Chromium (Cr), % 18 to 21
16 to 18
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 56.6 to 66.5
59.1 to 65.4
Manganese (Mn), % 0.5 to 2.5
7.0 to 9.0
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 12 to 14
8.0 to 9.0
Nitrogen (N), % 0
0.080 to 0.18
Phosphorus (P), % 0 to 0.040
0 to 0.060
Silicon (Si), % 0 to 1.0
3.5 to 4.5
Sulfur (S), % 0 to 0.030
0 to 0.030