MakeItFrom.com
Menu (ESC)

AWS E318 vs. 6106 Aluminum

AWS E318 belongs to the iron alloys classification, while 6106 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E318 and the bottom bar is 6106 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 29
9.1
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Tensile Strength: Ultimate (UTS), MPa 620
290

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Melting Completion (Liquidus), °C 1440
660
Melting Onset (Solidus), °C 1400
610
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 15
190
Thermal Expansion, µm/m-K 14
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
49
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
160

Otherwise Unclassified Properties

Base Metal Price, % relative 23
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 4.4
8.3
Embodied Energy, MJ/kg 62
150
Embodied Water, L/kg 160
1190

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 22
29
Strength to Weight: Bending, points 20
35
Thermal Diffusivity, mm2/s 4.0
78
Thermal Shock Resistance, points 16
13

Alloy Composition

Aluminum (Al), % 0
97.2 to 99.3
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 20
0 to 0.2
Copper (Cu), % 0 to 0.75
0 to 0.25
Iron (Fe), % 57.6 to 69.5
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.8
Manganese (Mn), % 0.5 to 2.5
0.050 to 0.2
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 11 to 14
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.3 to 0.6
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15