MakeItFrom.com
Menu (ESC)

AWS E318 vs. Nickel 684

AWS E318 belongs to the iron alloys classification, while nickel 684 belongs to the nickel alloys. They have a modest 35% of their average alloy composition in common, which, by itself, doesn't mean much. There are 20 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is AWS E318 and the bottom bar is nickel 684.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 29
11
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
76
Tensile Strength: Ultimate (UTS), MPa 620
1190

Thermal Properties

Latent Heat of Fusion, J/g 290
320
Melting Completion (Liquidus), °C 1440
1370
Melting Onset (Solidus), °C 1400
1320
Specific Heat Capacity, J/kg-K 470
470
Thermal Expansion, µm/m-K 14
13

Otherwise Unclassified Properties

Base Metal Price, % relative 23
75
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 4.4
10
Embodied Energy, MJ/kg 62
140
Embodied Water, L/kg 160
360

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 22
40
Strength to Weight: Bending, points 20
30
Thermal Shock Resistance, points 16
34

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.3
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 17 to 20
15 to 20
Cobalt (Co), % 0
13 to 20
Copper (Cu), % 0 to 0.75
0 to 0.15
Iron (Fe), % 57.6 to 69.5
0 to 4.0
Manganese (Mn), % 0.5 to 2.5
0 to 0.75
Molybdenum (Mo), % 2.0 to 3.0
3.0 to 5.0
Nickel (Ni), % 11 to 14
42.7 to 64
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0 to 0.015
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
2.5 to 3.3