MakeItFrom.com
Menu (ESC)

AWS E318 vs. C34500 Brass

AWS E318 belongs to the iron alloys classification, while C34500 brass belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AWS E318 and the bottom bar is C34500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 29
12 to 28
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 78
40
Tensile Strength: Ultimate (UTS), MPa 620
340 to 430

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Melting Completion (Liquidus), °C 1440
910
Melting Onset (Solidus), °C 1400
890
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 15
120
Thermal Expansion, µm/m-K 14
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
26
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
29

Otherwise Unclassified Properties

Base Metal Price, % relative 23
24
Density, g/cm3 7.9
8.2
Embodied Carbon, kg CO2/kg material 4.4
2.6
Embodied Energy, MJ/kg 62
45
Embodied Water, L/kg 160
320

Common Calculations

Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 22
12 to 15
Strength to Weight: Bending, points 20
13 to 16
Thermal Diffusivity, mm2/s 4.0
37
Thermal Shock Resistance, points 16
11 to 14

Alloy Composition

Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 20
0
Copper (Cu), % 0 to 0.75
62 to 65
Iron (Fe), % 57.6 to 69.5
0 to 0.15
Lead (Pb), % 0
1.5 to 2.5
Manganese (Mn), % 0.5 to 2.5
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 11 to 14
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
32 to 36.5
Residuals, % 0
0 to 0.4