MakeItFrom.com
Menu (ESC)

AWS E318 vs. N10675 Nickel

AWS E318 belongs to the iron alloys classification, while N10675 nickel belongs to the nickel alloys. They have a modest 21% of their average alloy composition in common, which, by itself, doesn't mean much. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AWS E318 and the bottom bar is N10675 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
220
Elongation at Break, % 29
47
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 78
85
Tensile Strength: Ultimate (UTS), MPa 620
860

Thermal Properties

Latent Heat of Fusion, J/g 290
320
Melting Completion (Liquidus), °C 1440
1420
Melting Onset (Solidus), °C 1400
1370
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 15
11
Thermal Expansion, µm/m-K 14
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
1.2

Otherwise Unclassified Properties

Base Metal Price, % relative 23
80
Density, g/cm3 7.9
9.3
Embodied Carbon, kg CO2/kg material 4.4
16
Embodied Energy, MJ/kg 62
210
Embodied Water, L/kg 160
280

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
22
Strength to Weight: Axial, points 22
26
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 4.0
3.1
Thermal Shock Resistance, points 16
26

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0 to 0.080
0 to 0.010
Chromium (Cr), % 17 to 20
1.0 to 3.0
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 0 to 0.75
0 to 0.2
Iron (Fe), % 57.6 to 69.5
1.0 to 3.0
Manganese (Mn), % 0.5 to 2.5
0 to 3.0
Molybdenum (Mo), % 2.0 to 3.0
27 to 32
Nickel (Ni), % 11 to 14
51.3 to 71
Niobium (Nb), % 0 to 1.0
0 to 0.2
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0 to 0.010
Tantalum (Ta), % 0
0 to 0.2
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0
0 to 3.0
Vanadium (V), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1