MakeItFrom.com
Menu (ESC)

AWS E320 vs. EN 1.4983 Stainless Steel

Both AWS E320 and EN 1.4983 stainless steel are iron alloys. They have 71% of their average alloy composition in common. There are 21 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is AWS E320 and the bottom bar is EN 1.4983 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
40
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
78
Tensile Strength: Ultimate (UTS), MPa 620
630

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Melting Completion (Liquidus), °C 1410
1440
Melting Onset (Solidus), °C 1360
1400
Specific Heat Capacity, J/kg-K 460
470
Thermal Expansion, µm/m-K 14
16

Otherwise Unclassified Properties

Base Metal Price, % relative 38
19
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 6.5
4.1
Embodied Energy, MJ/kg 91
56
Embodied Water, L/kg 220
150

Common Calculations

PREN (Pitting Resistance) 28
24
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 21
22
Strength to Weight: Bending, points 20
21
Thermal Shock Resistance, points 16
14

Alloy Composition

Boron (B), % 0
0.0015 to 0.0060
Carbon (C), % 0 to 0.070
0.040 to 0.080
Chromium (Cr), % 19 to 21
16 to 18
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 31.8 to 43.5
61.8 to 69.6
Manganese (Mn), % 0.5 to 2.5
0 to 2.0
Molybdenum (Mo), % 2.0 to 3.0
2.0 to 2.5
Nickel (Ni), % 32 to 36
12 to 14
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 0.6
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
0.4 to 0.8