MakeItFrom.com
Menu (ESC)

AWS E320 vs. EN 1.8893 Steel

Both AWS E320 and EN 1.8893 steel are iron alloys. They have 41% of their average alloy composition in common. There are 20 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is AWS E320 and the bottom bar is EN 1.8893 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
16
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Tensile Strength: Ultimate (UTS), MPa 620
830

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Melting Completion (Liquidus), °C 1410
1460
Melting Onset (Solidus), °C 1360
1420
Specific Heat Capacity, J/kg-K 460
470
Thermal Expansion, µm/m-K 14
13

Otherwise Unclassified Properties

Base Metal Price, % relative 38
2.9
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 6.5
1.7
Embodied Energy, MJ/kg 91
23
Embodied Water, L/kg 220
51

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 21
29
Strength to Weight: Bending, points 20
25
Thermal Shock Resistance, points 16
24

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.070
0 to 0.2
Chromium (Cr), % 19 to 21
0 to 0.3
Copper (Cu), % 3.0 to 4.0
0 to 0.2
Iron (Fe), % 31.8 to 43.5
95.6 to 98
Manganese (Mn), % 0.5 to 2.5
1.4 to 1.7
Molybdenum (Mo), % 2.0 to 3.0
0.3 to 0.45
Nickel (Ni), % 32 to 36
0.3 to 0.7
Niobium (Nb), % 0 to 1.0
0 to 0.050
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 0.6
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.025
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.12