MakeItFrom.com
Menu (ESC)

AWS E320 vs. CC212E Bronze

AWS E320 belongs to the iron alloys classification, while CC212E bronze belongs to the copper alloys. There are 20 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AWS E320 and the bottom bar is CC212E bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
130
Elongation at Break, % 34
20
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
47
Tensile Strength: Ultimate (UTS), MPa 620
710

Thermal Properties

Latent Heat of Fusion, J/g 300
230
Melting Completion (Liquidus), °C 1410
1080
Melting Onset (Solidus), °C 1360
1020
Specific Heat Capacity, J/kg-K 460
440
Thermal Expansion, µm/m-K 14
18

Otherwise Unclassified Properties

Base Metal Price, % relative 38
27
Density, g/cm3 8.2
8.2
Embodied Carbon, kg CO2/kg material 6.5
3.4
Embodied Energy, MJ/kg 91
55
Embodied Water, L/kg 220
370

Common Calculations

Stiffness to Weight: Axial, points 13
8.5
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 21
24
Strength to Weight: Bending, points 20
21
Thermal Shock Resistance, points 16
22

Alloy Composition

Aluminum (Al), % 0
7.0 to 9.0
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 19 to 21
0
Copper (Cu), % 3.0 to 4.0
68 to 77
Iron (Fe), % 31.8 to 43.5
2.0 to 4.0
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0.5 to 2.5
8.0 to 15
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 32 to 36
1.5 to 4.5
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.6
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.5
Zinc (Zn), % 0
0 to 1.0