MakeItFrom.com
Menu (ESC)

AWS E320 vs. C90200 Bronze

AWS E320 belongs to the iron alloys classification, while C90200 bronze belongs to the copper alloys. There are 20 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is AWS E320 and the bottom bar is C90200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
30
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
41
Tensile Strength: Ultimate (UTS), MPa 620
260

Thermal Properties

Latent Heat of Fusion, J/g 300
200
Melting Completion (Liquidus), °C 1410
1050
Melting Onset (Solidus), °C 1360
880
Specific Heat Capacity, J/kg-K 460
370
Thermal Expansion, µm/m-K 14
18

Otherwise Unclassified Properties

Base Metal Price, % relative 38
34
Density, g/cm3 8.2
8.8
Embodied Carbon, kg CO2/kg material 6.5
3.3
Embodied Energy, MJ/kg 91
53
Embodied Water, L/kg 220
370

Common Calculations

Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 21
8.3
Strength to Weight: Bending, points 20
10
Thermal Shock Resistance, points 16
9.5

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 19 to 21
0
Copper (Cu), % 3.0 to 4.0
91 to 94
Iron (Fe), % 31.8 to 43.5
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0.5 to 2.5
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 32 to 36
0 to 0.5
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 0.6
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.6