MakeItFrom.com
Menu (ESC)

AWS E320 vs. C95800 Bronze

AWS E320 belongs to the iron alloys classification, while C95800 bronze belongs to the copper alloys. There are 20 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is AWS E320 and the bottom bar is C95800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34
22
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
44
Tensile Strength: Ultimate (UTS), MPa 620
660

Thermal Properties

Latent Heat of Fusion, J/g 300
230
Melting Completion (Liquidus), °C 1410
1060
Melting Onset (Solidus), °C 1360
1040
Specific Heat Capacity, J/kg-K 460
440
Thermal Expansion, µm/m-K 14
17

Otherwise Unclassified Properties

Base Metal Price, % relative 38
29
Density, g/cm3 8.2
8.3
Embodied Carbon, kg CO2/kg material 6.5
3.4
Embodied Energy, MJ/kg 91
55
Embodied Water, L/kg 220
370

Common Calculations

Stiffness to Weight: Axial, points 13
7.9
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 21
22
Strength to Weight: Bending, points 20
20
Thermal Shock Resistance, points 16
23

Alloy Composition

Aluminum (Al), % 0
8.5 to 9.5
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 19 to 21
0
Copper (Cu), % 3.0 to 4.0
79 to 83.2
Iron (Fe), % 31.8 to 43.5
3.5 to 4.5
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0.5 to 2.5
0.8 to 1.5
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 32 to 36
4.0 to 5.0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.6
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Residuals, % 0
0 to 0.5