MakeItFrom.com
Menu (ESC)

AWS E320 vs. K93050 Alloy

Both AWS E320 and K93050 alloy are iron alloys. They have 73% of their average alloy composition in common. There are 19 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AWS E320 and the bottom bar is K93050 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Poisson's Ratio 0.28
0.3
Shear Modulus, GPa 77
72
Tensile Strength: Ultimate (UTS), MPa 620
500 to 680

Thermal Properties

Latent Heat of Fusion, J/g 300
270
Melting Completion (Liquidus), °C 1410
1430
Melting Onset (Solidus), °C 1360
1380
Specific Heat Capacity, J/kg-K 460
460
Thermal Expansion, µm/m-K 14
12

Otherwise Unclassified Properties

Base Metal Price, % relative 38
26
Density, g/cm3 8.2
8.2
Embodied Carbon, kg CO2/kg material 6.5
4.7
Embodied Energy, MJ/kg 91
65
Embodied Water, L/kg 220
120

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 21
17 to 23
Strength to Weight: Bending, points 20
17 to 21
Thermal Shock Resistance, points 16
16 to 21

Alloy Composition

Carbon (C), % 0 to 0.070
0 to 0.15
Chromium (Cr), % 19 to 21
0 to 0.25
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 31.8 to 43.5
61.4 to 63.9
Manganese (Mn), % 0.5 to 2.5
0 to 1.0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 32 to 36
36
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0 to 0.020
Selenium (Se), % 0
0.15 to 0.3
Silicon (Si), % 0 to 0.6
0 to 0.35
Sulfur (S), % 0 to 0.030
0 to 0.020