MakeItFrom.com
Menu (ESC)

AWS E320 vs. S44800 Stainless Steel

Both AWS E320 and S44800 stainless steel are iron alloys. They have 63% of their average alloy composition in common. There are 21 material properties with values for both materials. Properties with values for just one material (14, in this case) are not shown.

For each property being compared, the top bar is AWS E320 and the bottom bar is S44800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 34
23
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 77
82
Tensile Strength: Ultimate (UTS), MPa 620
590

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Melting Completion (Liquidus), °C 1410
1460
Melting Onset (Solidus), °C 1360
1410
Specific Heat Capacity, J/kg-K 460
480
Thermal Expansion, µm/m-K 14
11

Otherwise Unclassified Properties

Base Metal Price, % relative 38
19
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 6.5
3.8
Embodied Energy, MJ/kg 91
52
Embodied Water, L/kg 220
190

Common Calculations

PREN (Pitting Resistance) 28
42
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 21
21
Strength to Weight: Bending, points 20
20
Thermal Shock Resistance, points 16
19

Alloy Composition

Carbon (C), % 0 to 0.070
0 to 0.010
Chromium (Cr), % 19 to 21
28 to 30
Copper (Cu), % 3.0 to 4.0
0 to 0.15
Iron (Fe), % 31.8 to 43.5
62.6 to 66.5
Manganese (Mn), % 0.5 to 2.5
0 to 0.3
Molybdenum (Mo), % 2.0 to 3.0
3.5 to 4.2
Nickel (Ni), % 32 to 36
2.0 to 2.5
Niobium (Nb), % 0 to 1.0
0
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 0.6
0 to 0.2
Sulfur (S), % 0 to 0.030
0 to 0.020