MakeItFrom.com
Menu (ESC)

AWS E320LR vs. A413.0 Aluminum

AWS E320LR belongs to the iron alloys classification, while A413.0 aluminum belongs to the aluminum alloys. There are 20 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E320LR and the bottom bar is A413.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 34
3.5
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 580
240

Thermal Properties

Latent Heat of Fusion, J/g 300
570
Melting Completion (Liquidus), °C 1410
590
Melting Onset (Solidus), °C 1360
580
Specific Heat Capacity, J/kg-K 460
900
Thermal Expansion, µm/m-K 14
21

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 8.2
2.6
Embodied Carbon, kg CO2/kg material 6.2
7.6
Embodied Energy, MJ/kg 87
140
Embodied Water, L/kg 220
1040

Common Calculations

Stiffness to Weight: Axial, points 13
16
Stiffness to Weight: Bending, points 24
54
Strength to Weight: Axial, points 20
25
Strength to Weight: Bending, points 19
33
Thermal Shock Resistance, points 15
11

Alloy Composition

Aluminum (Al), % 0
82.9 to 89
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 21
0
Copper (Cu), % 3.0 to 4.0
0 to 1.0
Iron (Fe), % 32.7 to 42.5
0 to 1.3
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 1.5 to 2.5
0 to 0.35
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 32 to 36
0 to 0.5
Niobium (Nb), % 0 to 0.4
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.3
11 to 13
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25