MakeItFrom.com
Menu (ESC)

AWS E320LR vs. Grade Ti-Pd8A Titanium

AWS E320LR belongs to the iron alloys classification, while grade Ti-Pd8A titanium belongs to the titanium alloys. There are 19 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is AWS E320LR and the bottom bar is grade Ti-Pd8A titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
13
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 580
500

Thermal Properties

Latent Heat of Fusion, J/g 300
420
Melting Completion (Liquidus), °C 1410
1660
Melting Onset (Solidus), °C 1360
1610
Specific Heat Capacity, J/kg-K 460
540
Thermal Expansion, µm/m-K 14
8.7

Otherwise Unclassified Properties

Density, g/cm3 8.2
4.5
Embodied Carbon, kg CO2/kg material 6.2
49
Embodied Energy, MJ/kg 87
840
Embodied Water, L/kg 220
520

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 20
31
Strength to Weight: Bending, points 19
31
Thermal Shock Resistance, points 15
39

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.1
Chromium (Cr), % 19 to 21
0
Copper (Cu), % 3.0 to 4.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 32.7 to 42.5
0 to 0.25
Manganese (Mn), % 1.5 to 2.5
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 32 to 36
0 to 0.050
Niobium (Nb), % 0 to 0.4
0
Oxygen (O), % 0
0 to 0.4
Palladium (Pd), % 0
0.12 to 0.3
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.3
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
98.8 to 99.9
Residuals, % 0
0 to 0.4