MakeItFrom.com
Menu (ESC)

AWS E320LR vs. SAE-AISI 1017 Steel

Both AWS E320LR and SAE-AISI 1017 steel are iron alloys. They have a modest 38% of their average alloy composition in common, which, by itself, doesn't mean much. There are 20 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is AWS E320LR and the bottom bar is SAE-AISI 1017 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
20 to 30
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Tensile Strength: Ultimate (UTS), MPa 580
420 to 460

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Melting Completion (Liquidus), °C 1410
1470
Melting Onset (Solidus), °C 1360
1420
Specific Heat Capacity, J/kg-K 460
470
Thermal Expansion, µm/m-K 14
12

Otherwise Unclassified Properties

Base Metal Price, % relative 36
1.8
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 6.2
1.4
Embodied Energy, MJ/kg 87
18
Embodied Water, L/kg 220
45

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
15 to 16
Strength to Weight: Bending, points 19
16 to 17
Thermal Shock Resistance, points 15
13 to 14

Alloy Composition

Carbon (C), % 0 to 0.030
0.15 to 0.2
Chromium (Cr), % 19 to 21
0
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 32.7 to 42.5
99.11 to 99.55
Manganese (Mn), % 1.5 to 2.5
0.3 to 0.6
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 32 to 36
0
Niobium (Nb), % 0 to 0.4
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.3
0
Sulfur (S), % 0 to 0.015
0 to 0.050