MakeItFrom.com
Menu (ESC)

AWS E320LR vs. C42600 Brass

AWS E320LR belongs to the iron alloys classification, while C42600 brass belongs to the copper alloys. There are 20 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is AWS E320LR and the bottom bar is C42600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
1.1 to 40
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
42
Tensile Strength: Ultimate (UTS), MPa 580
410 to 830

Thermal Properties

Latent Heat of Fusion, J/g 300
200
Melting Completion (Liquidus), °C 1410
1030
Melting Onset (Solidus), °C 1360
1010
Specific Heat Capacity, J/kg-K 460
380
Thermal Expansion, µm/m-K 14
18

Otherwise Unclassified Properties

Base Metal Price, % relative 36
31
Density, g/cm3 8.2
8.7
Embodied Carbon, kg CO2/kg material 6.2
2.9
Embodied Energy, MJ/kg 87
48
Embodied Water, L/kg 220
340

Common Calculations

Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 20
13 to 27
Strength to Weight: Bending, points 19
14 to 23
Thermal Shock Resistance, points 15
15 to 29

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 21
0
Copper (Cu), % 3.0 to 4.0
87 to 90
Iron (Fe), % 32.7 to 42.5
0.050 to 0.2
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 1.5 to 2.5
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 32 to 36
0.050 to 0.2
Niobium (Nb), % 0 to 0.4
0
Phosphorus (P), % 0 to 0.020
0.020 to 0.050
Silicon (Si), % 0 to 0.3
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
2.5 to 4.0
Zinc (Zn), % 0
5.3 to 10.4
Residuals, % 0
0 to 0.2