MakeItFrom.com
Menu (ESC)

AWS E320LR vs. C82500 Copper

AWS E320LR belongs to the iron alloys classification, while C82500 copper belongs to the copper alloys. There are 19 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is AWS E320LR and the bottom bar is C82500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34
1.0 to 20
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
45
Tensile Strength: Ultimate (UTS), MPa 580
550 to 1100

Thermal Properties

Latent Heat of Fusion, J/g 300
240
Melting Completion (Liquidus), °C 1410
980
Melting Onset (Solidus), °C 1360
860
Specific Heat Capacity, J/kg-K 460
390
Thermal Expansion, µm/m-K 14
17

Otherwise Unclassified Properties

Density, g/cm3 8.2
8.8
Embodied Carbon, kg CO2/kg material 6.2
10
Embodied Energy, MJ/kg 87
160
Embodied Water, L/kg 220
310

Common Calculations

Stiffness to Weight: Axial, points 13
7.7
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 20
18 to 35
Strength to Weight: Bending, points 19
17 to 27
Thermal Shock Resistance, points 15
19 to 38

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
1.9 to 2.3
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 21
0 to 0.1
Cobalt (Co), % 0
0.15 to 0.7
Copper (Cu), % 3.0 to 4.0
95.3 to 97.8
Iron (Fe), % 32.7 to 42.5
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 1.5 to 2.5
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 32 to 36
0 to 0.2
Niobium (Nb), % 0 to 0.4
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.3
0.2 to 0.35
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5