MakeItFrom.com
Menu (ESC)

AWS E320LR vs. S41425 Stainless Steel

Both AWS E320LR and S41425 stainless steel are iron alloys. They have 59% of their average alloy composition in common. There are 21 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is AWS E320LR and the bottom bar is S41425 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
17
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Tensile Strength: Ultimate (UTS), MPa 580
920

Thermal Properties

Latent Heat of Fusion, J/g 300
280
Melting Completion (Liquidus), °C 1410
1450
Melting Onset (Solidus), °C 1360
1410
Specific Heat Capacity, J/kg-K 460
470
Thermal Expansion, µm/m-K 14
10

Otherwise Unclassified Properties

Base Metal Price, % relative 36
13
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 6.2
2.9
Embodied Energy, MJ/kg 87
40
Embodied Water, L/kg 220
120

Common Calculations

PREN (Pitting Resistance) 28
21
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
33
Strength to Weight: Bending, points 19
27
Thermal Shock Resistance, points 15
33

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.050
Chromium (Cr), % 19 to 21
12 to 15
Copper (Cu), % 3.0 to 4.0
0 to 0.3
Iron (Fe), % 32.7 to 42.5
74 to 81.9
Manganese (Mn), % 1.5 to 2.5
0.5 to 1.0
Molybdenum (Mo), % 2.0 to 3.0
1.5 to 2.0
Nickel (Ni), % 32 to 36
4.0 to 7.0
Niobium (Nb), % 0 to 0.4
0
Nitrogen (N), % 0
0.060 to 0.12
Phosphorus (P), % 0 to 0.020
0 to 0.020
Silicon (Si), % 0 to 0.3
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.0050