MakeItFrom.com
Menu (ESC)

AWS E320LR vs. S44535 Stainless Steel

Both AWS E320LR and S44535 stainless steel are iron alloys. They have 59% of their average alloy composition in common. There are 21 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is AWS E320LR and the bottom bar is S44535 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
28
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 77
78
Tensile Strength: Ultimate (UTS), MPa 580
450

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Melting Completion (Liquidus), °C 1410
1430
Melting Onset (Solidus), °C 1360
1390
Specific Heat Capacity, J/kg-K 460
480
Thermal Expansion, µm/m-K 14
11

Otherwise Unclassified Properties

Base Metal Price, % relative 36
11
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 6.2
2.4
Embodied Energy, MJ/kg 87
34
Embodied Water, L/kg 220
140

Common Calculations

PREN (Pitting Resistance) 28
22
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
16
Strength to Weight: Bending, points 19
17
Thermal Shock Resistance, points 15
15

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 19 to 21
20 to 24
Copper (Cu), % 3.0 to 4.0
0 to 0.5
Iron (Fe), % 32.7 to 42.5
73.2 to 79.6
Lanthanum (La), % 0
0.040 to 0.2
Manganese (Mn), % 1.5 to 2.5
0.3 to 0.8
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 32 to 36
0
Niobium (Nb), % 0 to 0.4
0
Phosphorus (P), % 0 to 0.020
0 to 0.050
Silicon (Si), % 0 to 0.3
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.020
Titanium (Ti), % 0
0.030 to 0.2